Болтовня летуча, письмена живучи
Litera scripta manet
 

"Manuscripts don't burn." - Mikhail Bulgakov

"So many books... So little time." - Anon

"Do not say a little in many words but a great deal in a few." - Pythagoras


If you want to know the basics of Babenko's favorite biosystems representing pharmacologically most significant ion-selective conductors, called "KATP", "chemodiodes", "transchaenzimes" and "metabolic sensors", but have no time to read more than one article, try this laconic review with the citation score exceeding the magic number, 575,

Babenko A. P., Aguilar-Bryan L., Bryan J.  A view of SUR/KIR6.X, KATP channels. Annu Rev Physiol 60: 667-687.


Want you get as much as possible scientific information about KATP from just a dozen of original papers, read these in the following order (* indicates the corresponding author who can give you additional details):

Aguilar-Bryan L., Nichols C. G., Wechsler S. W., Clement IV J. P., Boyd III A. E., Gonzalez G., Herrera-Sosa H., Nguy K., Bryan J.*, Nelson, D. A.  Cloning of the beta-cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268: 423-426.

Inagaki N., Gonoi T., Clement IV J. P., Namba N., Inazawa J., Gonzalea G., Aguilar-Bryan L., Seino S., Bryan J*. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor.  Science [see comments] 270: 1166-1170.

Nichols C. G.*, Shyng S. L., Nestorovicz A., Glasser B., Clement IV, J. P., Gonzalez G., Aguilar-Bryan L., Permutt M. A., Bryan J.  Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272: 1785-1787.

Clement IV J. P., Kunjilwar K., Gonzalez G., Schwanstecher M., Panten U., Aguilar-Bryan L., Bryan J.*  Association and stoichiometry of KATP channel subunits. Neuron 18: 827-838.

Zerangue N., Schwappach B., Jan Y. N., Jan L. Y.*  A new ER Trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 22: 537-548. 

Babenko A. P.* and Bryan J.  SUR domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem (Cover featured Accelerated Publication) 278: 41577-41580.

Tucker S. J., Gribble F. M., Zhao C., Trapp S., Ashcroft F. M.*  Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulfonylurea receptor. Nature 387: 179-183.

Babenko A. P.* and Bryan J.  A conserved inhibitory and differential stimulatory action of nucleotides on KIR6.0/SUR complexes is essential for metabolism-excitation coupling by KATP channels. J Biol Chem 276: 49083-49092.

Inagaki N., Gonoi T., Clement IV J. P., Wang C. Z., Aguilar-Bryan L., Bryan J., Seino, S*.  A family of  sulfonylurea receptors determines the pharmacologic properties of ATP-sensitive K+ channels. Neuron 16: 1011-1017.

Babenko A. P.*, Gonzalez G., Bryan J.  Pharmaco-topology of sulfonylurea receptors. J Biol Chem (Accelerated Publication) 275: 717-720.

Koster J. C., Marshall B. A., Ensor N., Corbett J. A., Nichols C. G.*  Targeted overactivity of beta cell KATP channels induces profound neonatal diabetes. Cell 100: 645-654.

Babenko A. P*., Polak M*., Cavé H., Busiah K., Czernichow P., Scharfmann R., Bryan J., Aguilar-Bryan L., Vaxillaire M., Froguel P. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus.  N Engl J Med [see Editorial] 355: 456-466.


If you want more of our relevant papers, consider these:

Babenko A. P.* and Vaxillaire M. Mechanism of KATP hyperactivity and sulfonylurea tolerance due to a diabetogenic mutation in L0 helix of sulfonylurea receptor 1 (ABCC8). FEBS Letters. 2011. 585: 3555-3559.

Babenko A. P.*.  A novel ABCC8(SUR1)-dependent mechanism of metabolism-excitation uncoupling. J Biol Chem (Accelerated Publication). 2008. 283: 8788-8782.

Babenko A. P.  KATP channels “vingt ans apres”: ATG to PDB to Mechanism. Journal of Mol Cell Cardiol (Focused Issue KATP Channels: From molecules to disease) 39: 79-98.

Bryan J. et al.  Insulin secretagogues, sulfonylurea receptors and KATP channels. Curr Pharma Design 11: 2699-716.

Bryan J. et al.  Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 53: S104-S112.

Babenko A. P.* and Bryan J.  SUR-dependent modulation of KATP channels by an N-terminal KIR6.2 peptide: Defining intersubunit gating interactions. J Biol Chem 277: 43997-44004.

Babenko A. P.*, Gonzalez G., Bryan J.  Hetero-concatemeric KIR6.X4/SUR14 channels display distinct conductivities, but uniform ATP-inhibition. J Biol Chem (Accelerated Publication) 275: 31563-31566.

Babenko A. P. et al.  Coupling between SUR1 and KIR6.2 specifies properties of beta-cell KATP channels. pp. 44-60 in Molecular Pathogenesis of MODYs, edited by F. M. Matschinsky and M. A. Magnuson. Frontiers in Diabetes. Vol. 15, Karger, Basel, 2000.

Babenko A. P.*, Gonzalez G., Bryan J.  The tolbutamide site of SUR1 and a mechanism for its functional coupling to KATP channel closure. FEBS Letters (cover featured) 459: 367-376.

Babenko A. P.*, Gonzalez G., Bryan J.  Two regions of SUR specify the spontaneous bursting and ATP-inhibition of KATP channel isoforms. J Biol Chem 274: 11587-11592.

Babenko A. P.* et al. Sulfonylurea receptors set the maximal open probability, ATP-sensitivity and plasma membrane density of KATP channels. FEBS Letters 445: 131-136.

Babenko A. P.*, Gonzalez G., Bryan J.  The N-terminus of KIR6.2 limits spontaneous bursting and modulates the ATP-inhibition of KATP channels. Biochem Biophys Research Communications  255: 231-238.

Babenko A. P.* et al.  Reconstituted human cardiac KATP channels: Functional identity with the native channels from the sarcolemma of human ventricular cells. Circ Res 83: 1132-1143.

Aguilar-Bryan L. et al.  Toward understanding the assembly and structure of KATP channels. Physiological Reviews 78: 227-245.

Babenko A. and Vassort G*.  Enhancement of the ATP-sensitive K+ current by extracellular ATP in rat ventricular myocytes: Involvement of adenylyl cyclase-induced subsarcolemmal ATP depletion. Circ Res 80: 589-600.

Babenko A. P. and Vassort G.*  Purinergic facilitation of ATP-sensitive potassium current in rat ventricular myocytes. British J Pharmacol 20: 631-638.

Babenko A. P.*, Kazantseva S.T., and Samoilov V.O.  Adenosine does not play a fundamental role in activation of KATP currents in rat ventricular cardiomyocytes. Biologicheskie Membrany 13(1): 19-28.

Babenko A. P.  Testing the adenosine-activatability of the ATP-sensitive potassium (KATP) current in neonatal and adult rat ventricular cardiomyocytes. pp. 322-325. In: "Potassium channels in normal and pathological conditions", Eds: Vereecke J., van Bogaert P.P. and Verdonck F. Leuven, University Press, Leuven, 1995.

Babenko A. P.* and Samoilov V. O.  Functioning the K+ channels opening in ventricular cardiomyocytes sarcolemma upon hypoxia. Biologicheskie membrany 11 (1): 35-44.

Babenko A. P.*, Samoilov V. O., and Kazantseva S. T.  Potassium channels in the cardiomyocyte sarcolemma: Initial opening under the influence of hypoxia. Basic and Applied Myology 2: 317-324.

Babenko A. P.*, Kazantseva S. T., and Khavinson V. Kh.  Activation of ATP-sensitive K+ channels of cardiomyocytes by endogenous cardiopeptides. Bull Exp Biol Med 114:980-984.

Babenko A. P.* et al.  ATP-sensitive K+-channels in the human adult ventricular cardiomyocytes membrane. FEBS Letters 313: 148-150.

Babenko A. P.* and Samoilov V. O.  The reaction to hypoxia of ATP-sensitive K+ channels in rat cardiomyocytes. Fiziol Zh SSSR Im I M Sechenova 77 (11): 55-59.


If you can't access some of our publications freely via supposed to be free pubmed, you can get their full text versions from our thematic PDF compilations stored in our private file cabinet here.

 

Continue exploring our Main Page